ELECTRICAL ENGINEER'S WORLD 


Image result for COMPLETE ELECTRICAL

From the Global Positioning System to electric power generation, electrical engineers have contributed to the development of a wide range of technologies. They design, develop, test, and supervise the deployment of electrical systems and electronic devices. For example, they may work on the design of telecommunication systems, the operation of electric power stations, the lighting and wiring of buildings, the design of household appliances, or the electrical control of industrial machinery.
Fundamental to the discipline are the sciences of physics and mathematics as these help to obtain both a qualitative and quantitative description of how such systems will work. Today most engineering work involves the use of computers and it is commonplace to use computer-aided design programs when designing electrical systems. Nevertheless, the ability to sketch ideas is still invaluable for quickly communicating with others.
Although most electrical engineers will understand basic circuit theory (that is the interactions of elements such as resistorscapacitorsdiodestransistors, and conductors in a circuit), the theories employed by engineers generally depend upon the work they do. For example, quantum mechanics and solid state physics might be relevant to an engineer working on VLSI (the design of integrated circuits), but are largely irrelevant to engineers working with macroscopic electrical systems. Even circuit theory may not be relevant to a person designing telecommunication systems that use off-the-shelf components. Perhaps the most important technical skills for electrical engineers are reflected in university programs, which emphasize strong numerical skillscomputer literacy, and the ability to understand the technical language and concepts that relate to electrical engineering.
A wide range of instrumentation is used by electrical engineers. For simple control circuits and alarms, a basic multi meter measuring voltagecurrent, and resistance may suffice. Where time-varying signals need to be studied, the oscilloscope is also an ubiquitous instrument. In RF engineering and high frequency telecommunications, spectrum analyzers and network analyzers are used. In some disciplines, safety can be a particular concern with instrumentation. For instance, medical electronics designers must take into account that much lower voltages than normal can be dangerous when electrodes are directly in contact with internal body fluids. Power transmission engineering also has great safety concerns due to the high voltages used; although voltmeters may in principle be similar to their low voltage equivalents, safety and calibration issues make them very different. Many disciplines of electrical engineering use tests specific to their discipline. Audio electronics engineers use audio test sets consisting of a signal generator and a meter, principally to measure level but also other parameters such as harmonic distortion and noise. Likewise, information technology have their own test sets, often specific to a particular data format, and the same is true of television broadcasting.
For many engineers, technical work accounts for only a fraction of the work they do. A lot of time may also be spent on tasks such as discussing proposals with clients, preparing budgets and determining project schedules. Many senior engineers manage a team of technicians or other engineers and for this reason project management skills are important. Most engineering projects involve some form of documentation and strong written communication skills are therefore very important.
The workplaces of engineers are just as varied as the types of work they do. Electrical engineers may be found in the pristine lab environment of a fabrication plant, the offices of a consulting firm or on site at a mine. During their working life, electrical engineers may find themselves supervising a wide range of individuals including scientistselectricianscomputer programmers, and other engineers.
Electrical engineering has an intimate relationship with the physical sciences. For instance, the physicist Lord Kelvin played a major role in the engineering of the first transatlantic telegraph cable. Conversely, the engineer Oliver Heaviside produced major work on the mathematics of transmission on telegraph cables.Electrical engineers are often required on major science projects. For instance, large particle accelerators such as CERN need electrical engineers to deal with many aspects of the project: from the power distribution, to the instrumentation, to the manufacture and installation of the superconducting electromagnets.